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along with curves corresponding to equations (7c)-(7e). This 
figure shows that the arithmetic mean, /c,, is an appropriate 
upper bound for the numerical data rather thank,, whereas 
the prediction of k* underestimates the results. This result is 
not surprising since the effect of the boundaries has been 
ignored. Indeed, it is reasonable to assume that the insulating 
side boundaries imposed in the numerical simulations will 
tend to increase the effective conductivity relative to a 
domain that is unbounded in the transverse direction. Thus, 
k* acts as an approximate lower bound of the effective con- 
ductivity while k, remains as the upper bound. These bounds 
may be compared with I- 1.63 V,-the best straight-line fit of 
the numerical data [I]. It is interesting to observe that k, 
gives, at first sight, a reasonable fit of the numerical data, 
although one may question whether the curvature is correct. 

In conclusion, the finite, square domain with circular 
inclusions studied by Muralidhar [I] violates the assumptions 
of classical effective medium theory. In particular, the latter 
is based on the assumptions that the averaging volume is 
large compared with that of the inclusion, and that the num- 
ber of inclusions within the medium is large. The results in 
Fig. 1 show, however, that the classical theory provides useful 
bounds on the numerical results. In the absence of other 
information, it appears that k* is a reasonable estimator of 
the effective conductivity. Finally, the conclusion reached by 
Muralidhar [I] that the static effective conductivity can be 

used for unsteady problems corresponds with a similar con- 
clusion for unbounded groundwater flow domains reached 
by Dagan [5]. 
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Comments on “Analysis of close-contact melting for octadecane and ice 
inside isothermally heated horizontal rectangular capsule” 

THE PURPOSE of this letter is to point out that the thin liquid 
film analysis reported in ref. [l] is a special case of a more 
general theory published almost three years ago [2], which 
was apparently overlooked. Reference [2] described melting 
on a rectangular contact surface, with or without relative 
motion (sliding) between the two solid parts, and with or 
without heating due to viscous dissipation in the liquid film. 
The analysis of Hirata et al. qualifies as a special case of ref. 
[2] for three reasons. They assumed that : 

(i) The rectangular contact surface is infinitely wide (the 
short side was labeled Win their Fig. 4). 

(ii) There is no relative motion, that is, the phase-change 
material does not slide laterally. 

(iii) Viscous dissipation in the lubricating tilm is neg- 
ligible. 

Hirata et al.‘s key theoretical result-the film thickness 
formula (17)-is essentially the same as equation (21) in ref. 
PI 

t = [P”,(%) m]‘14 (21) 

in which h is the film thickness, L the short side of the contact 
surface (Hirata et al.‘s IF), Sle the liquid Stefan number, a 
the thermal diffusivity, p the viscosity, and r$ = 1 the factor 
accounting for the infinitely wide shape of the contact area. 
When the contact area is a rectangle with the same L but 
hnite width, the factor 4 is smaller than 1 (Fig. 2 in ref. [2]). 

It is important to note that equation (21) is expressed in 

terms of the instantaneous average pressure (P.) maintained 
between the phase-change material and the flat heater. In 
this way the results of ref. [2] are applicable to any geometry 
in which the instantaneous average pressure may change with 
time, for example, because of the finiteness of the solid block 
of phase-change material, and the size and shape of the 
capsule (as in Hirata ef al’s geometry). 

Equation (21) stresses the fact that the contact melting 
process is quasisteady, i.e. decoupled from the other time- 
dependent features of the greater system. In this sense, the 
presence of time as a variable on the right-hand side of Hirata 
et al.‘s film thickness formula (17) is misleading: the time- 
dependence entered that expression only through the instan- 
taneous average pressure, which changes slowly with time. 
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